Influence of optical properties on two-photon fluorescence imaging in turbid samples.
نویسندگان
چکیده
A numerical model was developed to simulate the effects of tissue optical properties, objective numerical aperture (N.A.), and instrument performance on two-photon-excited fluorescence imaging of turbid samples. Model data are compared with measurements of fluorescent microspheres in a tissuelike scattering phantom. Our results show that the measured two-photon-excited signal decays exponentially with increasing focal depth. The overall decay constant is a function of absorption and scattering parameters at both excitation and emission wavelengths. The generation of two-photon fluorescence is shown to be independent of the scattering anisotropy, g, except for g > 0.95. The N.A. for which the maximum signal is collected varies with depth, although this effect is not seen until the focal plane is greater than two scattering mean free paths into the sample. Overall, measurements and model results indicate that resolution in two-photon microscopy is dependent solely on the ability to deliver sufficient ballistic photon density to the focal volume. As a result we show that lateral resolution in two-photon microscopy is largely unaffected by tissue optical properties in the range typically encountered in soft tissues, although the maximum imaging depth is strongly dependent on absorption and scattering coefficients, scattering anisotropy, and objective N.A..
منابع مشابه
Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium.
In recent years, fluorescence microscopy based on two-photon excitation has become a popular tool for biological and biomedical imaging. Among its advantages is the enhanced depth penetration permitted by fluorescence excitation with the near-infrared photons, which is particularly attractive for deep-tissue imaging. To fully utilize two-photon fluorescence microscopy as a three-dimensional res...
متن کاملFluorescence microscopic imaging through tissue-like turbid media
In this article, effective point spread functions for fluorescence microscopic imaging are introduced to investigate the effects of scattering particle size and optical gating on image resolution under single-photon (1p) and two-photon (2p) excitation. The dependence of image resolution on these effects shows a deeper penetration depth under 2p excitation due to the use of a longer illumination...
متن کاملNonlinear Optical Properties of Rigid Polyurethane Foam/SiO2 Nanocomposite
Polyurethane closed cell (PUCC)/SiO2 nanocomposites have been prepared by using in situ polymerization approach. The third-order optical nonlinearities of PUCC/SiO2 nanocomposites, dissolved in DMF are characterized by Z-scan technique at the measurement wavelength of 532 nm. The nonlinear refractive (NLR) indices and nonlinear absorption (NLA) coefficients of samples were calculated from close...
متن کاملTwo-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt.
Three carbazole dicationic salts, namely 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), 9-ethyl-3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (9E-BMVC) and 9-ethyl-3,6-bis(1-hydroxyethyl-4-vinylpyridinium)carbazole diiodide (9E-BHVC), were synthesized successfully. Their photophysical properties were evaluated by absorption, one- and two-photon fluorescence spectra, and...
متن کاملSynthesize and Optical properties of ZnO: Eu Microspheres Based Nano-sheets at Direct and Indirect Excitation
Europium (Eu) doped ZnO microsphere based nano-sheets were synthesized through hydrothermal method. Effects of different concentrations of Europium on structural and optical properties of ZnO nano-sheets were investigated in detail. Prepared un-doped and Eu-doped ZnO samples were characterized using X-Ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 39 7 شماره
صفحات -
تاریخ انتشار 2000